淡江大學機構典藏:Item 987654321/125217
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8439993      在线人数 : 8377
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125217


    题名: QSurfNet: A Hybrid Quantum Convolutional Neural Network for Surface Defect Recognition
    作者: Tsai, Chi-yi
    关键词: Quantum convolutional neural network;Quantum machine learning;Surface defect recognition;Parameterized quantum circuit;Industry 4.0
    日期: 2023-04-27
    上传时间: 2024-03-08 12:07:00 (UTC+8)
    摘要: In this paper, we propose a novel hybrid quantum–classical convolutional neural network named QSurfNet, inspired by an efficient surface defect recognition model called SurfNetv2. SurfNetv2 is an established high-speed classical convolution neural network (CNN) model for image recognition, and QSurfNet further inherits the legacy by introducing quantum CNN (QCNN) layers, reducing the number of convolution blocks in the model architecture and the image size required for recognition. The QSurfNet architecture consists of a QCNN module, a feature extraction module, and a surface defect recognition module. The algorithm works on end-to-end supervised quantum machine learning and deep learning techniques to classify the surface defect categories of the surface defect image datasets. For this research, we used the 8 × 8-pixel and 12 × 12-pixel resolution RGB image information from the public Northeastern University dataset, and an industry-sourced calcium silicate board private dataset. We used principal component analysis for image dimensionality reduction across the R, G, and B channels, individually. We compare the performance of QSurfNet with six state-of-the-art methods on these datasets upon recognition results on test accuracy, recall, precision, and F1-Measure performance metrics. QSurfNet is novel in terms of the algorithm design methodology that can turn any classical CNN algorithm into state-of-the-art QCNN. Hence, the proposed methodology contributes to the practical feasibility of developing novel convolutional architecture designs of hybrid quantum–classical algorithms.
    關聯: Quantum Information Processing 22, 179
    DOI: 10.1007/s11128-023-03930-5
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML57检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈