English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64191/96979 (66%)
造訪人次 : 8313117      線上人數 : 7223
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125217


    題名: QSurfNet: A Hybrid Quantum Convolutional Neural Network for Surface Defect Recognition
    作者: Tsai, Chi-yi
    關鍵詞: Quantum convolutional neural network;Quantum machine learning;Surface defect recognition;Parameterized quantum circuit;Industry 4.0
    日期: 2023-04-27
    上傳時間: 2024-03-08 12:07:00 (UTC+8)
    摘要: In this paper, we propose a novel hybrid quantum–classical convolutional neural network named QSurfNet, inspired by an efficient surface defect recognition model called SurfNetv2. SurfNetv2 is an established high-speed classical convolution neural network (CNN) model for image recognition, and QSurfNet further inherits the legacy by introducing quantum CNN (QCNN) layers, reducing the number of convolution blocks in the model architecture and the image size required for recognition. The QSurfNet architecture consists of a QCNN module, a feature extraction module, and a surface defect recognition module. The algorithm works on end-to-end supervised quantum machine learning and deep learning techniques to classify the surface defect categories of the surface defect image datasets. For this research, we used the 8 × 8-pixel and 12 × 12-pixel resolution RGB image information from the public Northeastern University dataset, and an industry-sourced calcium silicate board private dataset. We used principal component analysis for image dimensionality reduction across the R, G, and B channels, individually. We compare the performance of QSurfNet with six state-of-the-art methods on these datasets upon recognition results on test accuracy, recall, precision, and F1-Measure performance metrics. QSurfNet is novel in terms of the algorithm design methodology that can turn any classical CNN algorithm into state-of-the-art QCNN. Hence, the proposed methodology contributes to the practical feasibility of developing novel convolutional architecture designs of hybrid quantum–classical algorithms.
    關聯: Quantum Information Processing 22, 179
    DOI: 10.1007/s11128-023-03930-5
    顯示於類別:[電機工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML53檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋