淡江大學機構典藏:Item 987654321/125207

淡江大學機構典藏

Menu Search
查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125207


    题名: High-spatiotemporal-resolution PM2.5 forecasting by hybrid deep learning models with ensembled massive heterogeneous monitoring data
    作者: Chang, Li-chiu
    日期: 2023-11-20
    上传时间: 2024-03-08 12:06:26 (UTC+8)
    出版者: Elsevier
    摘要: High-resolution real-time air quality forecasting can alert decision-makers and residents about forthcoming air pollution events and refine air quality management. The Environmental Protection Administration in Taiwan has deployed numerous low-cost air quality microsensors near industrial zones lately to facilitate local air quality monitoring. Nevertheless, the frequent occurrence of missing sensor data due to problems of mobile transmission, frontend/backend device malfunction, or other unforeseen issues would raise difficulty in making quick responses to air pollution incidents. This study proposed a hybrid deep learning model (AE-CNN-BP) collaborating an Autoencoder (AE), a Convolutional Neural Network (CNN), and a Back Propagation Neural Network (BPNN) to effectively extract crucial features from big data for making successive high-spatiotemporal-resolution forecasts of PM2.5 concentrations 4 h ahead. The proposed model was trained and tested in three industrial zones densely installed with microsensors in Kaohsiung City of Taiwan. A high pollution incident was selected to evaluate model performance. The results show that the proposed model could reliably produce nice high-spatiotemporal-resolution forecasts for 12 air quality monitoring stations and 485 microsensors, with Coefficient of Determination (R2) values and Root Mean Squared Error (RMSE) of 0.82 (0.76) and 11.05 (12.75) μg/m3 in the training (testing) stage, respectively. For the selected incident, the Mean Absolute Percentage Error (MAPE) values of the proposed model were 22.3% and 27.1% at T+1 and T+4, respectively. This study demonstrates that the proposed deep learning model based on ensemble datasets of sparsely distributed monitoring stations and densely deployed microsensors can offer reliable high-spatiotemporal-resolution air quality forecasts, benefiting environmental studies and informed policymaking by accounting for local-scale variations in PM2.5 concentrations.
    關聯: Journal of Cleaner Production 433(25), 139825
    DOI: 10.1016/j.jclepro.2023.139825
    显示于类别:[人工智慧學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML97检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章
    DSpace Software Copyright © 2002-2004  MIT &  HP  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈