淡江大學機構典藏:Item 987654321/125177
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64191/96979 (66%)
造訪人次 : 8488073      線上人數 : 7843
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125177


    題名: Expectation-maximization machine learning model for micromechanical evaluation of thermally-cycled solder joints in a semiconductor
    作者: Chen, Tzu-Chia
    關鍵詞: machine learning;micromechanical properties;nanoindentation;solder joint
    日期: 2023-04-27
    上傳時間: 2024-03-07 12:06:24 (UTC+8)
    出版者: Institute of Physics Publishing Ltd.
    摘要: This paper aims to study the microstructural and micromechanical variations of solder joints in a semiconductor under the evolution of thermal-cycling loading. For this purpose, a model was developed on the basis of expectation-maximization machine learning (ML) and nanoindentation mapping. Using this model, it is possible to predict and interpret the microstructural features of solder joints through the micromechanical variations (i.e. elastic modulus) of interconnection. According to the results, the classification of Sn-based matrix, intermetallic compounds (IMCs) and the grain boundaries with specified elastic-modulus ranges was successfully performed through the ML model. However, it was detected some overestimations in regression process when the interfacial regions got thickened in the microstructure. The ML outcomes also revealed that the thermal-cycling evolution was accompanied with stiffening and growth of IMCs; while the spatial portion of Sn-based matrix decreased in the microstructure. It was also figured out that the stiffness gradient becomes intensified in the treated samples, which is consistent with this fact that the thermal cycling increases the mechanical mismatch between the matrix and the IMCs.
    關聯: Journal of Physics-Condensed Matter 35, 305901
    DOI: 10.1088/1361-648X/accdab
    顯示於類別:[人工智慧學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML82檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋