淡江大學機構典藏:Item 987654321/125177
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8346915      在线人数 : 8447
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125177


    题名: Expectation-maximization machine learning model for micromechanical evaluation of thermally-cycled solder joints in a semiconductor
    作者: Chen, Tzu-Chia
    关键词: machine learning;micromechanical properties;nanoindentation;solder joint
    日期: 2023-04-27
    上传时间: 2024-03-07 12:06:24 (UTC+8)
    出版者: Institute of Physics Publishing Ltd.
    摘要: This paper aims to study the microstructural and micromechanical variations of solder joints in a semiconductor under the evolution of thermal-cycling loading. For this purpose, a model was developed on the basis of expectation-maximization machine learning (ML) and nanoindentation mapping. Using this model, it is possible to predict and interpret the microstructural features of solder joints through the micromechanical variations (i.e. elastic modulus) of interconnection. According to the results, the classification of Sn-based matrix, intermetallic compounds (IMCs) and the grain boundaries with specified elastic-modulus ranges was successfully performed through the ML model. However, it was detected some overestimations in regression process when the interfacial regions got thickened in the microstructure. The ML outcomes also revealed that the thermal-cycling evolution was accompanied with stiffening and growth of IMCs; while the spatial portion of Sn-based matrix decreased in the microstructure. It was also figured out that the stiffness gradient becomes intensified in the treated samples, which is consistent with this fact that the thermal cycling increases the mechanical mismatch between the matrix and the IMCs.
    關聯: Journal of Physics-Condensed Matter 35, 305901
    DOI: 10.1088/1361-648X/accdab
    显示于类别:[人工智慧學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML80检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈