淡江大學機構典藏:Item 987654321/125169
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8346887      在线人数 : 8539
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125169


    题名: JCF: Joint Coarse and Fine-Grained Similarity Comparison for Plagiarism Detection Based on NLP
    作者: Chang, C. Y.;Jhang, S.-J.;Wu, S.-J.;Roy, D. S.
    关键词: Natural language processing;TF–IDF;Word2Vec;Coarse and fine grained;Document similarity
    日期: 2023-06-24
    上传时间: 2024-03-07 12:05:58 (UTC+8)
    出版者: Springer New York LLC
    摘要: Document similarity recognition is one of the most important problems in natural language processing. This paper proposes a plagiarism comparison mechanism called JCF. Initially, the TF–IDF scheme is applied to build a bag of words as the representation of the common features of all documents. Then, the plagiarism comparison is carried out in a coarse-grained manner, which speeds up the similarity comparison. Finally, the most similar documents can then be compared in detail based on a fine-grained approach. In addition, the JCF detects plagiarism at both syntax level and semantic-like level. To prevent the distortion of similarity comparison, this paper further develops a similarity restoration approach such that the proposed JCF can obtain both advantages of quickness and accuracy. Performance studies confirm that the proposed JCF outperforms existing studies in terms of precision, recall and F1 score.
    關聯: Journal of Supercomputing 80, p.363-394
    DOI: 10.1007/s11227-023-05472-0
    显示于类别:[資訊工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML70检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈