English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62830/95882 (66%)
Visitors : 4055483      Online Users : 740
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125102


    Title: Analysis of a wind-driven power generation system with root slapping mechanism
    Authors: Wang, Yi-ren
    Keywords: nonlinear vibrations;Method of Multiple Scales;energy harvester;piezoelectric patch
    Date: 2024-01-05
    Issue Date: 2024-03-01 12:05:44 (UTC+8)
    Publisher: MDPI
    Abstract: This study introduces a groundbreaking slap-type Vibration Energy Harvesting (VEH) system, leveraging a rotating shaft with magnets to induce vibrations in an adjacent elastic steel sheet through magnetic repulsion. This unique design causes the elastic sheet to vibrate, initiating the oscillation of a seesaw-type rigid plate lever. The lever then slaps a piezoelectric patch (PZT) at the elastic steel sheet’s root, converting vibrations into electrical energy. Notably, the design enables the PZT to withstand deformation and flapping forces simultaneously, enhancing power conversion efficiency. The driving force for the rotating shaft is harnessed from the downstream flow field generated by moving objects like rotorcraft, fixed-wing aircraft, motorcycles, and bicycles. Beyond conventional vibration energy harvesting, this design taps into additional electric energy generated by the PZT’s slapping force. This study includes mathematical modeling of nonlinear elastic beams, utilizing the Method of Multiple Scales (MOMS) for in-depth vibration mode analysis. Experimental validation ensures the convergence of theory and practice, confirming the feasibility and superior voltage generation efficiency of this slap-type VEH concept compared to traditional VEH systems.
    Relation: Applied Sciences 14(2), 482
    DOI: 10.3390/app14020482
    Appears in Collections:[航空太空工程學系暨研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback