English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64188/96967 (66%)
造訪人次 : 11337928      線上人數 : 110
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125089


    題名: On the Identifiability of Artificial Financial Time Series
    作者: Lin, Chuang-chieh
    關鍵詞: machine learning;long-short term memory;predictability;Markov decision process;price-volume data
    日期: 2024-05
    上傳時間: 2024-02-23 12:05:17 (UTC+8)
    出版者: Institute of Information Science, Academia Sinica
    摘要: Financial time series are often considered to be difficult to model and unlikely to predict. In this study, we assume that financial time series are based on a stochastic series generated by a Markov decision process. Based on this assumption, we investigate two problems related to the identification of the price time series of financial instruments. We try to distinguish the real price-volume time series from the artificial one. First, we investigate whether there is any machine learning model that can distinguish between real price-volume time series and those with time horizon reversed. Then, we investigate whether there is any machine learning model that can distinguish the price-volume time series from the real one when they are subjected to random manipulations of different proportions. The data we use are the daily prices and trading volumes of six U.S. stocks and one crypto-currency BTC/USD. We apply Long-Short Term Memory (LSTM) as the main machine learning model for the binary classification due to its success in fitting time series data. Based on the experimental results, we give positive answers to the above two questions. Our results also partially support the conjecture that the dynamics of a financial time series are driven by an underlying Markov decision processes.
    關聯: Journal of Information Science and Engineering 40(3), p.567-579
    DOI: 10.6688/JISE.202405 40(3).0009
    顯示於類別:[資訊工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML117檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋