English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62830/95882 (66%)
Visitors : 4097093      Online Users : 434
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125019


    Title: Anti-Adhesive Resorbable Indomethacin/Bupivacaine-Eluting Nanofibers for Tendon Rupture Repair: In Vitro and In Vivo Studies
    Authors: Huang, Chao-tsai
    Keywords: anti-adhesion;drug-eluting nanofibers;tendon repair;sustained release
    Date: 2023-11-12
    Issue Date: 2024-01-30 12:05:13 (UTC+8)
    Publisher: MPDI
    Abstract: The treatment and surgical repair of torn Achilles tendons seldom return the wounded tendon to its original elasticity and stiffness. This study explored the in vitro and in vivo simultaneous release of indomethacin and bupivacaine from electrospun polylactide–polyglycolide composite membranes for their capacity to repair torn Achilles tendons. These membranes were fabricated by mixing polylactide–polyglycolide/indomethacin, polylactide–polyglycolide/collagen, and polylactide–polyglycolide/bupivacaine with 1,1,1,3,3,3-hexafluoro-2-propanol into sandwich-structured composites. Subsequently, the in vitro pharmaceutic release rates over 30 days were determined, and the in vivo release behavior and effectiveness of the loaded drugs were assessed using an animal surgical model. High concentrations of indomethacin and bupivacaine were released for over four weeks. The released pharmaceutics resulted in complete recovery of rat tendons, and the nanofibrous composite membranes exhibited exceptional mechanical strength. Additionally, the anti-adhesion capacity of the developed membrane was confirmed. Using the electrospinning technique developed in this study, we plan on manufacturing degradable composite membranes for tendon healing, which can deliver sustained pharmaceutical release and provide a collagenous habitat.
    Relation: International Journal of Molecular Sciences 24(22), 16235
    DOI: 10.3390/ijms242216235
    Appears in Collections:[化學工程與材料工程學系暨研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML13View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback