English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64188/96967 (66%)
造訪人次 : 11337771      線上人數 : 75
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/124863


    題名: Ultrafiltration membrane fabricated from polyethylene terephthalate plastic waste for treating microalgal wastewater and reusing for microalgal cultivation
    作者: Rawindran, Hemamalini;Hut, Nur Arif bin;Vrasna, Dhita Karunia;Goh, Pei Sean;Lim, Jun Wei;Liew, Chin Seng;Ho, Chii-Dong;Kang, Hooi-Siang;Shahid, Muhammad Kashif;Ng, Hui-Suan;Habila, Mohamed A.;Khoo, Kuan Shiong
    關鍵詞: Membrane;Polyethylene terephthalate;Plastic waste;Microalgae;Lipid
    日期: 2024-01
    上傳時間: 2023-12-27 12:05:25 (UTC+8)
    出版者: Elesvier
    摘要: Current study had made a significant progress in microalgal wastewater treatment through the implementation of an economically viable polyethylene terephthalate (PET) membrane derived from plastic bottle waste. The membrane exhibited an exceptional pure water flux of 156.5 ± 0.25 L/m2h and a wastewater flux of 15.37 ± 0.02 L/m2h. Moreover, the membrane demonstrated remarkable efficiency in selectively removing a wide range of residual parameters, achieving rejection rates up to 99%. The reutilization of treated wastewater to grow microalgae had resulted in a marginal decrease in microalgal density, from 10.01 ± 0.48 to 9.26 ± 0.66 g/g. However, this decline was overshadowed by a notable enhancement in lipid production with level rising from 181.35 ± 0.42 to 225.01 ± 0.11 mg/g. These findings signified the membrane's capacity to preserve nutrients availability within the wastewater; thus, positively influencing the lipid synthesis and accumulation within microalgal cells. Moreover, the membrane's comprehensive analysis of cross-sectional and surface topographies revealed the presence of macropores with a highly interconnected framework, significantly amplifying the available surface area for fluid flow. This exceptional structural attribute had substantially contributed to the membrane's efficacy by facilitating superior filtration and separation process. Additionally, the identified functional groups within the membrane aligned consistently with those commonly found in PET polymer, confirming the membrane's compatibility and efficacy in microalgal wastewater treatment.
    關聯: Chemosphere 346
    DOI: 10.1016/j.chemosphere.2023.140591
    顯示於類別:[化學工程與材料工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML215檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋