淡江大學機構典藏:Item 987654321/124862
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 9385179      在线人数 : 249
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/124862


    题名: Investigation of CO2 Absorption Rate in Gas/Liquid Membrane Contactors with Inserting 3D Printing Mini-Channel Turbulence Promoters
    作者: Ho, Chii-Dong;Chen, Luke;Tu, Jr-Wei;Lin, Yu-Chen;Lim, Jun-Wei;Chen, Zheng-Zhong
    关键词: carbon dioxide absorption;3D mini-channel turbulence promoter;absorption flux improvement;Sherwood number;concentration polarization effect
    日期: 2023-12-04
    上传时间: 2023-12-27 12:05:20 (UTC+8)
    出版者: MDPI AG
    摘要: The CO2 absorption by Monoethanolamine (MEA) solutions as chemical absorption was conducted in the membrane gas absorption module with inserting 3D mini-channel turbulence promoters of the present work. A mathematical modeling of CO2 absorption flux was analyzed by using the chemical absorption theory based on mass-transfer resistances in series. The membrane absorption module with embedding 3D mini-channel turbulence promoters in the current study indicated that the CO2 absorption rate improvement is achieved due to the diminishing concentration polarization effect nearby the membrane surfaces. A simplified regression equation of the average Sherwood number was correlated to express the enhanced mass-transfer coefficient of the CO2 absorption. The experimental results and theoretical predictions showed that the absorption flux improvement was significantly improved with implementing 3D mini-channel turbulence promoters. The experimental results of CO2 absorption fluxes were performed in good agreement with the theoretical predictions in aqueous MEA solutions. A further absorption flux enhancement up to 30.56% was accomplished as compared to the results in the previous work, which the module was inserted the promoter without mini channels. The influences of the MEA absorbent flow rates and inlet CO2 concentrations on the absorption flux and absorption flux improvement are also illustrated under both concurrent- and countercurrent-flow operations.
    關聯: Membranes 13(12), p.899-921
    DOI: 10.3390/membranes13120899
    显示于类别:[化學工程與材料工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML88检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈