English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62830/95882 (66%)
Visitors : 4054576      Online Users : 757
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/124803


    Title: Quantum correlations on the no-signaling boundary: self-testing and more
    Authors: Wu, Jun-yi
    Date: 2023-07-11
    Issue Date: 2023-12-11 12:05:14 (UTC+8)
    Publisher: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
    Abstract: In device-independent quantum information, correlations between local measurement outcomes observed by spatially separated parties in a Bell test play a fundamental role. Even though it is long-known that the set of correlations allowed in quantum theory lies strictly between the Bell-local set and the no-signaling set, many questions concerning the geometry of the quantum set remain unanswered. Here, we revisit the problem of when the boundary of the quantum set coincides with the no-signaling set in the simplest Bell scenario. In particular, for each Class of these common boundaries containing k zero probabilities, we provide a (5−k)-parameter family of quantum strategies realizing these (extremal) correlations. We further prove that self-testing is possible in all nontrivial Classes beyond the known examples of Hardy-type correlations, and provide numerical evidence supporting the robustness of these self-testing results. Candidates of one-parameter families of self-testing correlations from some of these Classes are identified. As a byproduct of our investigation, if the qubit strategies leading to an extremal nonlocal correlation are local-unitarily equivalent, a self-testing statement provably follows. Interestingly, all these self-testing correlations found on the no-signaling boundary are provably non-exposed. An analogous characterization for the set M of quantum correlations arising from finite-dimensional maximally entangled states is also provided. En route to establishing this last result, we show that all correlations of M in the simplest Bell scenario are attainable as convex combinations of those achievable using a Bell pair and projective measurements. In turn, we obtain the maximal Clauser-Horne-Shimony-Holt Bell inequality violation by any maximally entangled two-qudit state and a no-go theorem regarding the self-testing of such states.
    Relation: Quantum 7,  p.1054
    DOI: 10.22331/q-2023-07-11-1054
    Appears in Collections:[物理學系暨研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML33View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback