English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62830/95882 (66%)
Visitors : 4085723      Online Users : 727
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/124786


    Title: A Novel Multipath QUIC Protocol with Minimized Flow Complete Time for Internet Content Distribution
    Authors: Hui, Lin
    Keywords: Quick UDP internet connect (QUIC);multipath transport;HTTP;content distribution;internet protocol;internet services
    Date: 2023-10-13
    Issue Date: 2023-12-06 12:05:20 (UTC+8)
    Abstract: The rapid growth of network services and applications has led to an exponential increase in data flows on the internet. Given the dynamic nature of data traffic in the realm of internet content distribution, traditional TCP/IP network systems often struggle to guarantee reliable network resource utilization and management. The recent advancement of the Quick UDP Internet Connect (QUIC) protocol equips media transfer applications with essential features, including structured flow controlled streams, quick connection establishment, and seamless network path migration. These features are vital for ensuring the efficiency and reliability of network performance and resource utilization, especially when network hosts transmit data flows over end-to-end paths between two endpoints. QUIC greatly improves media transfer performance by reducing both connection setup time and transmission latency. However, it is still constrained by the limitations of single-path bandwidth capacity and its variability. To address this inherent limitation, recent research has delved into the concept of multipath QUIC, which utilizes multiple network paths to transmit data flows concurrently. The benefits of multipath QUIC are twofold: it boosts the overall bandwidth capacity and mitigates flow congestion issues that might plague individual paths. However, many previous studies have depended on basic scheduling policies, like round-robin or shortest-time-first, to distribute data transmission across multiple paths. These policies often overlook the subtle characteristics of network paths, leading to increased link congestion and transmission costs. In this paper, we introduce a novel multipath QUIC strategy aimed at minimizing flow completion time while taking into account both path delay and packet loss rate. Experimental results demonstrate the superiority of our proposed method compared to standard QUIC, Lowest-RTT-First (LRF) QUIC, and Pluginized QUIC schemes. The relative performance underscores the efficacy of our design in achieving efficient and reliable data transfer in real-world scenarios using the Mininet simulator.
    Relation: Computer Science and Information Systems
    DOI: 10.2298/CSIS230818078L
    Appears in Collections:[資訊工程學系暨研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML29View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback