English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62830/95882 (66%)
Visitors : 4095846      Online Users : 450
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/124679


    Title: Microwave Imaging of Conductors by Direct Sampling Method and U-Net
    Authors: Chiu, Chien-ching
    Keywords: inverse scattering;frequency domain;conductor;direct sampling method;U-Net
    Date: 2023-07-27
    Issue Date: 2023-10-25 12:05:40 (UTC+8)
    Abstract: Electromagnetic imaging is an emerging technology widely applied in many fields, such as medical imaging, biomedical imaging, and nondestructive testing. In this study, we place transmitter and receiver antennas around an unknown object. We can use the direct sampling method (DSM) to reconstruct the material size and shape of the unknown object on the basis of the scattered field. We apply U-Net to reconstruct electromagnetic images of perfect conductors. Perfect conductors in free space are studied by irradiating a transverse magnetic (TM) polarization wave. Using the scattered electric field measured outside the object together with the boundary conditions on the conductor surface, a set of nonlinear integral equations can be derived and further converted into matrix form by the method of moments. Since an iterative algorithm is computationally expensive and time-consuming, a real-time electromagnetic imaging technique combining deep learning neural networks is proposed for reconstructing the perfect conductors. The initial shapes of the conductors are first computed by DSM by using the scattered electric field measured outside the object. The initial shapes of the conductors are then input to U-Net for training. Numerical results show that U-Net is capable of reconstructing accurate conductor shapes. Therefore, artificial intelligence techniques can reconstruct shapes more accurately than iterative algorithms, when combined with DSM.
    Relation: Sensors and Materials 35(7), p. 2399-2411
    DOI: 10.18494/SAM4446
    Appears in Collections:[Graduate Institute & Department of Electrical Engineering] Journal Article

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML31View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback