淡江大學機構典藏:Item 987654321/124676
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64176/96941 (66%)
造訪人次 : 9133025      線上人數 : 13784
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/124676


    題名: Predicting Multiple Numerical Solutions to the Duffing Equation Using Machine Learning
    作者: Wang, Yi-ren
    關鍵詞: Duffing equation;deep learning;neural networks;recurrent neural networks;long short-term memory
    日期: 2023-09-15
    上傳時間: 2023-10-25 12:05:23 (UTC+8)
    出版者: MDPI
    摘要: This study addresses the problem of predicting convergence outcomes in the Duffing
    equation, a nonlinear second-order differential equation. The Duffing equation exhibits intriguing
    behavior in both undamped free vibration and forced vibration with damping, making it a subject
    of significant interest. In undamped free vibration, the convergence result oscillates randomly between
    1 and −1, contingent upon initial conditions. For forced vibration with damping, multiple
    variables, including initial conditions and external forces, influence the vibration patterns, leading
    to diverse outcomes. To tackle this complex problem, we employ the fourth-order Runge–Kutta
    method to gather convergence results for both scenarios. Our approach leverages machine learning
    techniques, specifically the Long Short-Term Memory (LSTM) model and the LSTM-Neural Network
    (LSTM-NN) hybrid model. The LSTM-NN model, featuring additional hidden layers of neurons,
    offers enhanced predictive capabilities, achieving an impressive 98% accuracy on binary datasets.
    However, when predicting multiple solutions, the traditional LSTM method excels. The research
    encompasses three critical stages: data preprocessing, model training, and verification. Our
    findings demonstrate that while the LSTM-NN model performs exceptionally well in predicting
    binary outcomes, the LSTM model surpasses it in predicting multiple solutions.
    關聯: Applied Sciences 2023 13(18), 10359
    DOI: 10.3390/app131810359
    顯示於類別:[航空太空工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML146檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋