淡江大學機構典藏:Item 987654321/124676
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8567956      在线人数 : 7449
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/124676


    题名: Predicting Multiple Numerical Solutions to the Duffing Equation Using Machine Learning
    作者: Wang, Yi-ren
    关键词: Duffing equation;deep learning;neural networks;recurrent neural networks;long short-term memory
    日期: 2023-09-15
    上传时间: 2023-10-25 12:05:23 (UTC+8)
    出版者: MDPI
    摘要: This study addresses the problem of predicting convergence outcomes in the Duffing
    equation, a nonlinear second-order differential equation. The Duffing equation exhibits intriguing
    behavior in both undamped free vibration and forced vibration with damping, making it a subject
    of significant interest. In undamped free vibration, the convergence result oscillates randomly between
    1 and −1, contingent upon initial conditions. For forced vibration with damping, multiple
    variables, including initial conditions and external forces, influence the vibration patterns, leading
    to diverse outcomes. To tackle this complex problem, we employ the fourth-order Runge–Kutta
    method to gather convergence results for both scenarios. Our approach leverages machine learning
    techniques, specifically the Long Short-Term Memory (LSTM) model and the LSTM-Neural Network
    (LSTM-NN) hybrid model. The LSTM-NN model, featuring additional hidden layers of neurons,
    offers enhanced predictive capabilities, achieving an impressive 98% accuracy on binary datasets.
    However, when predicting multiple solutions, the traditional LSTM method excels. The research
    encompasses three critical stages: data preprocessing, model training, and verification. Our
    findings demonstrate that while the LSTM-NN model performs exceptionally well in predicting
    binary outcomes, the LSTM model surpasses it in predicting multiple solutions.
    關聯: Applied Sciences 2023 13(18), 10359
    DOI: 10.3390/app131810359
    显示于类别:[航空太空工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML144检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈