淡江大學機構典藏:Item 987654321/124668
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64191/96979 (66%)
造訪人次 : 8368529      線上人數 : 7571
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/124668


    題名: Group Formation by Group Joining and Opinion Updates via Multi-Agent Online Gradient Ascent
    作者: Lin, Chuang-chieh
    關鍵詞: Nash equilibrium;Machine learning;Follow-the-regularized-Leader;Gradient ascent;Group formation
    日期: 2023-10-17
    上傳時間: 2023-10-23 12:05:24 (UTC+8)
    出版者: IEEE
    摘要: This article aims to exemplify best-response dynamics and multi-agent online learning by group formation. This extended abstract provides a summary of the full
    paper in IEEE Computational Intelligence Magazine on the special issue AI-eXplained (AI-X). The full paper
    includes interactive components to facilitate interested readers to grasp the idea of pure-strategy Nash equilibria and how the system of strategic agents
    converges to a stable state by the decentralized online gradient ascent with and without regularization.
    關聯: IEEE Computational Intelligence Magazine 18(4), p.60-61
    DOI: 10.1109/MCI.2023.3304084
    顯示於類別:[資訊工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML95檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋