淡江大學機構典藏:Item 987654321/124618
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64188/96967 (66%)
造访人次 : 11338373      在线人数 : 120
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/124618


    题名: 基於深度學習類神經網路之機器人動作決策認知系統
    Cognitive Systems with Robotic Motion Policies Based on Deep Learning Neural Networks
    作者: 許閔傑
    Hsu, Min-Jie
    关键词: cognitive system;deep learning;hypothesis generation model;memory model;perception model;Chinese calligraphy
    日期: 2023
    上传时间: 2023-10-06 14:22:53 (UTC+8)
    出版者: 臺灣: 國立臺灣師範大學
    摘要: High-dimensional complex motion generation is an interesting research topic. Most action generation methods in robotics research use a single pose as the model output. However, in some scenarios, only a series of motions can be output at one time. The calligraphy writing task belongs to a complex motion generation challenge which needs to output a series of motions at one time. The calligraphy writing task can be divided into position learning and posture learning. For position learning, human can directly form a properly rational statement of where to write. In Taylor’s problem categories, the position learning problem in calligraphy learning belongs to Q3 and Q4 types which are formal statement. That is, human can easily design an algorithm to generate a policy to robot. In the contrast, humans are not able to describe the relationship between the writing posture and the writing result. Therefore, the posture learning problem in calligraphy learning belongs to Q1 and Q2 types in Taylor's problem categories. In order to solve the problems of Q1 and Q2, this dissertation will propose the fundamental cognitive system with self-learning ability. This dissertation integrates the framework of human perception, memory, and decision-making into the robot system through the cognitive psychology. We use the top-down and bottom-up processing of the human perceptual system to design a perception model of the cognitive system, which enables encoder networks to learn online. In the memory model, we implement the psychological multi-store model with a deep neural network, so that robots can remember past events like humans. We use the hypothesis generation model of psychology in the decision-making model, so that the robot has a human-like thinking process. Integrating these cognitive models, robots can generate action strategies based on their goals through their own experience. Finally, we use a practical robot as experimental platform to verify the learning ability of the proposed cognitive system.
    显示于类别:[人工智慧學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML81检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈