English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 10025245      線上人數 : 19359
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/124578


    題名: A cross-platform recommendation system from Facebook to Instagram
    作者: Chang, Chia-ling
    關鍵詞: Cross-platformrecommendationsystem;Socialmedia;Facebook;Instagram
    日期: 2023-03-31
    上傳時間: 2023-10-04 12:06:05 (UTC+8)
    摘要: Abstract
    Purpose
    The purpose of this paper is to provide a cross-platform recommendation system that recommends the most suitable public Instagram accounts to Facebook users.

    Design/methodology/approach
    We collect data from both Facebook and Instagram and then propose a similarity matching mechanism for recommending the most appropriate Instagram accounts to Facebook users. By removing the data disparity between the two heterogeneous platforms and integrating them, the system is able to make more accurate recommendations.

    Findings
    The results show that the method proposed in this paper can recommend suitable public Instagram accounts to Facebook users with very high accuracy.

    Originality/value
    To the best of the authors’ knowledge, this is the first study to propose a recommender system to recommend Instagram public accounts to Facebook users. Second, our proposed method can integrate heterogeneous data from two different platforms to generate collaborative recommendations. Furthermore, our cross-platform system reveals an innovative concept of how multiple platforms can promote their respective platforms in a unified, cooperative and collaborative manner.
    關聯: The Electronic Library
    DOI: 10.1108/EL-09-2022-0210
    顯示於類別:[資訊與圖書館學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML111檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋