淡江大學機構典藏:Item 987654321/124565
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8292142      在线人数 : 7253
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/124565


    题名: IoT-interfaced solid-contact ion-selective electrodes for cyber-monitoring of element-specific nutrient information in hydroponics
    作者: Lin, Chi-yi
    关键词: Hydroponics;nutrient management;precision agriculture;solid-contact ion-selective electrode (SCISE);internet of things (IoT);wireless sensors
    日期: 2023-10-03
    上传时间: 2023-10-04 12:05:14 (UTC+8)
    出版者: Elsevier
    摘要: This study aims to monitor element-specific nutrient information during hydroponic cultivation by IoT-interfaced miniaturized ion sensors. Because of size, cost, and manufacturing advantages, solid-contact ion-selective electrodes (SCISEs) were fabricated as an ion sensor array and interfaced with wireless embedded-systems to construct an IoT nutrient sensor system (IoNSS) for the first time. The entire IoNSS framework was composed of (i) a nutrient solution sampling and sensing module with SCISEs controlled by an Arduino Due® microcontroller, (ii) a Wio Terminal® microcontroller for automated procedure setting, data recording, and wireless transmission, (iii) a private cloud server (a Network Attached Storage equipped with Node-RED® and MongoDB®) for data management, and (iv) MQTT webpage-based interactive interfaces. In experiments, we found that potentiometric signal resolution and noise of the Arduino-interfaced SCISEs were significantly improved and approached to instrumental DAQ-like quality by additional delta-sigma ADC (ADS1115®) chip conditioning. This facilitated cost-effective harvest of precise and high-quality IoT ion sensor data. Before on-site applications, each SCISE was two-point calibrated in multiple-ion solutions and was checked with the fixed interference method. The ion concentration measurements were also compared with those of commercial ISEs and ion chromatography. To test the system’s feasibility, the IoNSS was applied to cyber-monitoring of K+, NO3-, and NH4+ concentrations during two-week hydroponic cultivation of arugula (E. vesicaria) in an indoor plant factory (in Northern Taiwan) with a modified Cornell solution and an outdoor greenhouse (in Southern Taiwan) with a modified Yamasaki solution, respectively. It was demonstrated that the IoNSS was capable of real-time observation of the crop’s nitrate/ammonium utilization and nutrient solution’s EC-element dependency. Besides, the web interfaces successfully reported growing condition-dependent ion signals in a simultaneous and remote manner. To sum up, this work achieves novel cyber-monitoring of element-specific nutrient by IoT-interfaced SCISEs and paves a promising way for intelligent hydroponic management.
    關聯: Computers and Electronics in Agriculture 214, 108266
    DOI: 10.1016/j.compag.2023.108266
    显示于类别:[資訊工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML117检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈