淡江大學機構典藏:Item 987654321/124456
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 11059405      在线人数 : 22913
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/124456


    题名: On the problem of prescribing weighted scalar curvature and the weighted Yamabe flow
    作者: Ho, Pak-tung
    关键词: Yamabe problem;Yamabe soliton;smooth metric measure space
    日期: 2023-04-28
    上传时间: 2023-09-07 12:05:30 (UTC+8)
    出版者: De Gruyter
    摘要: The weighted Yamabe problem introduced by Case is the generalization of the Gagliardo-Nirenberg inequalities to smooth metric measure spaces. More precisely, given a smooth metric measure space (M,g,e−ϕdVg,m) , the weighted Yamabe problem consists on finding another smooth metric measure space conformal to (M,g,e−ϕdVg,m) such that its weighted scalar curvature is equal to λ+μe−ϕ∕m for some constants μ and λ , satisfying a certain condition. In this article, we consider the problem of prescribing the weighted scalar curvature. We first prove some uniqueness and nonuniqueness results and then some existence result about prescribing the weighted scalar curvature. We also estimate the first nonzero eigenvalue of the weighted Laplacian of (M,g,e−ϕdVg,m) . On the other hand, we prove a version of the conformal Schwarz lemma on (M,g,e−ϕdVg,m) . All these results are achieved by using geometric flows related to the weighted Yamabe flow. We also prove the backward uniqueness of the weighted Yamabe flow. Finally, we consider weighted Yamabe solitons, which are the self-similar solutions of the weighted Yamabe flow.
    關聯: Analysis and Geometry in Metric Spaces 11(1), 20220152
    DOI: 10.1515/agms-2022-0152
    显示于类别:[應用數學與數據科學學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML94检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈