淡江大學機構典藏:Item 987654321/124388
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 10885542      在线人数 : 20725
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/124388


    题名: Forecasting Volatility with Many Predictors
    作者: Ke, Tsung-han
    关键词: conditional heteroskedasticity;dimension reduction;GARCH model;risk management;S&P 500 Index
    日期: 2013-07-19
    上传时间: 2023-08-21 12:05:24 (UTC+8)
    摘要: This study investigates the forecasting performance of the GARCH(1,1) model by adding an effective covariate. Based on the assumption that many volatility predictors are available to help forecast the volatility of a target variable, this study shows how to construct a covariate from these predictors and plug it into the GARCH(1,1) model. This study presents a method of building a covariate such that the covariate contains the maximum possible amount of predictor information of the predictors for forecasting volatility. The loading of the covariate constructed by the proposed method is simply the eigenvector of a matrix. The proposed method enjoys the advantages of easy implementation and interpretation. Simulations and empirical analysis verify that the proposed method performs better than other methods for forecasting the volatility, and the results are quite robust to model misspecification. Specifically, the proposed method reduces the mean square error of the GARCH(1,1) model by 30% for forecasting the volatility of S&P 500 Index. The proposed method is also useful in improving the volatility forecasting of several GARCH-family models and for forecasting the value-at-risk. Copyright © 2013 John Wiley & Sons, Ltd.
    關聯: Journal of Forecasting 32(8),  p.743-754
    DOI: 10.1002/for.2268
    显示于类别:[會計學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML81检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈