English
| 正體中文 |
简体中文
|
全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 10198507 線上人數 : 18119
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by
NTU Library & TKU Library IR team.
搜尋範圍
全部機構典藏
商管學院
會計學系暨研究所
--期刊論文
查詢小技巧:
您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
進階搜尋
主頁
‧
登入
‧
上傳
‧
說明
‧
關於機構典藏
‧
管理
淡江大學機構典藏
>
商管學院
>
會計學系暨研究所
>
期刊論文
>
Item 987654321/124388
資料載入中.....
書目資料匯出
Endnote RIS 格式資料匯出
Bibtex 格式資料匯出
引文資訊
請使用永久網址來引用或連結此文件:
https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/124388
題名:
Forecasting Volatility with Many Predictors
作者:
Ke, Tsung-han
關鍵詞:
conditional heteroskedasticity
;
dimension reduction
;
GARCH model
;
risk management
;
S&P 500 Index
日期:
2013-07-19
上傳時間:
2023-08-21 12:05:24 (UTC+8)
摘要:
This study investigates the forecasting performance of the GARCH(1,1) model by adding an effective covariate. Based on the assumption that many volatility predictors are available to help forecast the volatility of a target variable, this study shows how to construct a covariate from these predictors and plug it into the GARCH(1,1) model. This study presents a method of building a covariate such that the covariate contains the maximum possible amount of predictor information of the predictors for forecasting volatility. The loading of the covariate constructed by the proposed method is simply the eigenvector of a matrix. The proposed method enjoys the advantages of easy implementation and interpretation. Simulations and empirical analysis verify that the proposed method performs better than other methods for forecasting the volatility, and the results are quite robust to model misspecification. Specifically, the proposed method reduces the mean square error of the GARCH(1,1) model by 30% for forecasting the volatility of S&P 500 Index. The proposed method is also useful in improving the volatility forecasting of several GARCH-family models and for forecasting the value-at-risk. Copyright © 2013 John Wiley & Sons, Ltd.
關聯:
Journal of Forecasting 32(8), p.743-754
DOI:
10.1002/for.2268
顯示於類別:
[會計學系暨研究所] 期刊論文
文件中的檔案:
檔案
描述
大小
格式
瀏覽次數
index.html
0Kb
HTML
81
檢視/開啟
在機構典藏中所有的資料項目都受到原著作權保護.
TAIR相關文章
DSpace Software
Copyright © 2002-2004
MIT
&
Hewlett-Packard
/
Enhanced by
NTU Library & TKU Library IR teams.
Copyright ©
-
回饋