English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 10232993      線上人數 : 19287
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/124286


    題名: Explore spatio-temporal PM2.5 features in northern Taiwan using machine learning techniques
    作者: Chang, Li-chiu
    關鍵詞: PM2.5;Spatio-temporal variation;Multi-step-ahead prediction;Self-organizing map (SOM);Back propagation neural network (BPNN);Gamma Test
    日期: 2020-05-23
    上傳時間: 2023-07-20 12:05:39 (UTC+8)
    摘要: The complex mixtures of local emission sources and regional transportations of air pollutants make accurate PM2.5 prediction a very challenging yet crucial task, especially under high pollution conditions. A symbolic representation of spatio-temporal PM2.5 features is the key to effective air pollution regulatory plans that notify the public to take necessary precautions against air pollution. The self-organizing map (SOM) can cluster high-dimensional datasets to form a meaningful topological map. This study implements the SOM to effectively extract and clearly distinguish the spatio-temporal features of long-term regional PM2.5 concentrations in a visible two-dimensional topological map. The spatial distribution of the configured topological map spans the long-term datasets of 25 monitoring stations in northern Taiwan using the Kriging method, and the temporal behavior of PM2.5 concentrations at various time scales (i.e., yearly, seasonal, and hourly) are explored in detail. Finally, we establish a machine learning model to predict PM2.5 concentrations for high pollution events. The analytical results indicate that: (1) high population density and heavy traffic load correspond to high PM2.5 concentrations; (2) the change of seasons brings obvious effects on PM2.5 concentration variation; and (3) the key input variables of the prediction model identified by the Gamma Test can improve model's reliability and accuracy for multi-step-ahead PM2.5 prediction. The results demonstrated that machine learning techniques can skillfully summarize and visibly present the clusted spatio-temporal PM2.5 features as well as improve air quality prediction accuracy.
    關聯: Science of The Total Environment 736, 139656
    DOI: 10.1016/j.scitotenv.2020.139656
    顯示於類別:[人工智慧學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML115檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋