淡江大學機構典藏:Item 987654321/124222
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 10947482      在线人数 : 21117
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/124222


    题名: Spatial-temporal flood inundation nowcasts by fusing machine learning methods and principal component analysis
    作者: Chang, Li-chiu
    关键词: Principal Component Analysis (PCA);Self-Organizing Map (SOM);Nonlinear Autoregressive with Exogenous Inputs (NARX);Spatio-temporal analysis of inundation;Urban flood forecasting
    日期: 2022-06-18
    上传时间: 2023-07-05 12:05:59 (UTC+8)
    摘要: The frequency and severity of floods have noticeably increased worldwide in the last decades due to climate change and urbanization. This study aims to build an urban flood warning system for reducing the impact of flood disasters. A great number of storm-induced rainfall data were collected in Taipei, Taiwan, and the corresponding 2-D inundation maps were simulated for illustrating urban rainfall-flood inundation processes. We proposed a novel urban flood forecast methodology framed by machine learning and statistical techniques to mine the spatial–temporal features between rainfall patterns and inundation maps for making multi-step-ahead regional flood inundation forecasts. The proposed methodology (PCA-SOM-NARX) integrated the advantages of Principal Component Analysis (PCA), Self-Organizing Map (SOM), and Nonlinear Autoregressive with Exogenous Inputs (NARX). PCA was used to extract principal components representing the different spatial distributions of urban inundation. SOM was used to cluster high dimensional inundation datasets to form a two-dimensional topological feature map. NARX was used to establish multi-step-ahead flood forecast models for the next hour at a 10-minute scale. The results show that the PCA-SOM-NARX approach not only produced more stable and accurate multi-step-ahead forecasts on flood inundation depth but was also more indicative of the spatial distribution of inundation caused by torrential rain events, compared to the SOM-NARX approach (the benchmark). The results demonstrate the proposed methodology can adequately grasp the inundation status associated with different rainfall distributions to reliably and accurately forecast regional flood inundation depths, which can help decision makers respond to flooding earlier and mitigate flood disasters.
    關聯: Journal of Hydrology 612, 128086
    DOI: 10.1016/j.jhydrol.2022.128086
    显示于类别:[人工智慧學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML110检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈