淡江大學機構典藏:Item 987654321/124215
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64182/96956 (66%)
造访人次 : 11233380      在线人数 : 17635
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/124215


    题名: Surface Electron-Hole Rich Species Active in the Electrocatalytic Water Oxidation
    作者: Chuang, Cheng-hao
    关键词: Electrodes;Oxidation;Oxidation state;Transition metals;Two dimensional materials
    日期: 2021-08-06
    上传时间: 2023-07-05 12:05:45 (UTC+8)
    摘要: Iridium and ruthenium and their oxides/hydroxides are the best candidates for the oxygen evolution reaction under harsh acidic conditions owing to the low overpotentials observed for Ru- and Ir-based anodes and the high corrosion resistance of Ir-oxides. Herein, by means of cutting edge operando surface and bulk sensitive X-ray spectroscopy techniques, specifically designed electrode nanofabrication and ab initio DFT calculations, we were able to reveal the electronic structure of the active IrOx centers (i.e., oxidation state) during electrocatalytic oxidation of water in the surface and bulk of high-performance Ir-based catalysts. We found the oxygen evolution reaction is controlled by the formation of empty Ir 5d states in the surface ascribed to the formation of formally IrV species leading to the appearance of electron-deficient oxygen species bound to single iridium atoms (μ1-O and μ1-OH) that are responsible for water activation and oxidation. Oxygen bound to three iridium centers (μ3-O) remains the dominant species in the bulk but do not participate directly in the electrocatalytic reaction, suggesting bulk oxidation is limited. In addition a high coverage of a μ1-OO (peroxo) species during the OER is excluded. Moreover, we provide the first photoelectron spectroscopic evidence in bulk electrolyte that the higher surface-to-bulk ratio in thinner electrodes enhances the material usage involving the precipitation of a significant part of the electrode surface and near-surface active species.
    關聯: Journal of The American Chemical Society 143(32), p.12524-12534
    DOI: 10.1021/jacs.1c01655
    显示于类别:[物理學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML111检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈