English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62830/95882 (66%)
Visitors : 4103355      Online Users : 874
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/124194


    Title: Modulating the electronic structure of zinc single atom catalyst by P/N coordination and Co2P supports for efficient oxygen reduction in Zn-Air battery
    Authors: Chuang, Cheng-hao
    Keywords: Single metal atom;Dual coordination;Synergistic effect;Oxygen reduction reaction;Zinc-air battery
    Date: 2022-03-23
    Issue Date: 2023-07-04 12:05:12 (UTC+8)
    Abstract: Single-atom catalysts have emerged as effective active species for electrocatalysis because of their appropriate structural and electronic properties. However, the weight percentage of single metal atoms are generally below 5 wt% in the catalysts, limiting the population of catalytic sites and their performance. In this work, we synthesized Zn single atoms with a configuration of ZnN3P in the carbon framework. With the Co2P particles as supports (ZnCo-PNC), the generic Zn single atom catalysts with a content of only 2 wt% showed a half-wave potential of 0.91 V for oxygen reduction reaction in alkaline medium. This value is higher than that for pure P doped Zn and Co based catalysts (Zn-PNC of 0.69 V, Co-PNC of 0.82 V), and even better than commercial Pt/C (0.87 V). DFT results demonstrated that the synergistic promotion of Co2P supports and N/P coordination could reduce the energy barrier to proceed ORR on Zn single atoms from 1.85 to 0.79 eV. By using it as the cathode catalyst for zinc-air battery application, it shows respectable performance in terms of maximum peak power (237.3 mW cm−2) and energy densities (847 W h kg−1). The current strategy may open new horizons to design high performance single atom catalysts by using suitable supports and coordination environment to tune their activity.
    Relation: Chemical Engineering Journal 440, 135928
    DOI: 10.1016/j.cej.2022.135928
    Appears in Collections:[物理學系暨研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML22View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback