淡江大學機構典藏:Item 987654321/124093
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64178/96951 (66%)
Visitors : 9852044      Online Users : 19656
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/124093


    Title: In situ/operando soft x-ray spectroscopic identification of a Co4+ intermediate in the oxygen evolution reaction of defective Co3O4 nanosheets
    Authors: Dong, Chung-li
    Date: 2022-09
    Issue Date: 2023-05-15 12:09:57 (UTC+8)
    Abstract: Defect engineering is an important means of improving the electrochemical performance of the Co3O4 electrocatalyst in the oxygen evolution reaction (OER). In this study, operando soft X-ray absorption spectroscopy (SXAS) is used to explore the electronic structure of Co3O4 under OER for the first time. The defect-rich Co3O4 (D-Co3O4) has a Co2.45+ state with Co2+ at both octahedral (Oh) and tetrahedral (Td) sites and Co3+ at Oh, whereas Co3O4 has Co2.6+ with Co2+ and Co3+ at Td and Oh sites, respectively. SXAS reveals that upon increasing the voltage, the Co2+ in D-Co3O4 is converted to low-spin Co3+, some of which is further converted to low-spin Co4+; most Co2+ in Co3O4 is converted to Co3+ but rarely to Co4+. When the voltage is switched off, Co4+ intermediates quickly disappear. These findings reveal Co(Oh) in D-Co3O4 can be rapidly converted to active low-spin Co4+ under operando conditions, which cannot be observed by ex situ XAS.
    Relation: Journal of Physical Chemistry Letters 13(35), p.8386–8396
    DOI: 10.1021/acs.jpclett.2c01557
    Appears in Collections:[Graduate Institute & Department of Electrical Engineering] Journal Article

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML106View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback