淡江大學機構典藏:Item 987654321/124051
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8443515      在线人数 : 8127
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/124051


    题名: RS-STQ: Recharge Scheduling Algorithm for Maximizing Spatial and Temporal Data Qualities
    作者: Dande, B.;Chang, C. Y.;Kuo, C. H.;Roy, D. S.
    关键词: Data accuracy;mobile charger (MC);recharge scheduling;wireless sensor networks (WSNs)
    日期: 2022-12
    上传时间: 2023-05-11 12:05:34 (UTC+8)
    出版者: IEEE
    摘要: With the help of wireless power transfer (WPT) technology, the mobile charger (MC) can transfer energy to the sensor nodes. This technology provides a new solution to prolong the lifetime of wireless rechargeable sensor networks (WRSNs). However, most of the existing studies focused on improving the charging efficiency or minimizing the latency, while very few studies improved the data accuracy of the network. This article proposes an efficient-energy recharging schedule for MC, aiming to maximize the data accuracy of the given network. Initially, the data accuracy of each sensor is measured by considering the spatial and temporal qualities. The proposed recharging schedule considers the spatial quality contribution of each recharging requested sensor. In addition, an energy management strategy is proposed for each requested sensor to locally adjust the sensing time sequence, aiming to improve the temporal quality. Each sensor might have a different energy consumption rate; therefore, this study also formulates an adaptive recharging request threshold for the sensor nodes, which is suitable for real applications. The experimental study shows that the proposed algorithm outperforms the literature in terms of data accuracy and recharged sensor’s spatial quality contributions.
    關聯: IEEE Sensors Journal 22(23), p. 23565-23580
    DOI: 10.1109/JSEN.2022.3215145
    显示于类别:[人工智慧學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML129检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈