淡江大學機構典藏:Item 987654321/124047
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64191/96979 (66%)
造訪人次 : 8504059      線上人數 : 8169
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/124047


    題名: Semantic Segmentation of High-Resolution Remote Sensing Images Using Multiscale Skip Connection Network
    作者: Ma, Bifang;Chang, Chih-Yung
    關鍵詞: Deep convolutional neural network;high-resolution remote sensing image;multi-scale skip connection;semantic segmentation
    日期: 2022-02-15
    上傳時間: 2023-05-11 12:05:24 (UTC+8)
    出版者: IEEE
    摘要: Semantic segmentation of remote sensing images plays a vital role in land resource management, yield estimation, and economic evaluation. Therefore, this paper proposes a multi-scale skip connection network with the Atrous convolution to deal with the segmentation problems of the multi-modal and multi-scale high-resolution remote sensing images. Firstly, we applied the Atrous convolution in the encoder to enlarge the convolution kernel’s receptive field. Secondly, based on the U-Net network, we merged the light and deep features of different scales by redesigning the skip connection and combining multi-scale features in each U-Net layer. Finally, we applied a pixel-by-pixel classification method and obtained the semantic segmentation results of remote sensing images. The effectiveness of the proposed algorithm is verified. The experimental results show that the mF1 scores are 89.4% and 90.3% on the open dataset of ISPRS Vaihingen and ISPRS Potsdam, respectively, which are better than the state-of-the-art algorithms.
    關聯: IEEE Sensors Journal 22(4), p. 3745-3755
    DOI: 10.1109/JSEN.2021.3139629
    顯示於類別:[人工智慧學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML125檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋