淡江大學機構典藏:Item 987654321/124047
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8568388      在线人数 : 7630
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/124047


    题名: Semantic Segmentation of High-Resolution Remote Sensing Images Using Multiscale Skip Connection Network
    作者: Ma, Bifang;Chang, Chih-Yung
    关键词: Deep convolutional neural network;high-resolution remote sensing image;multi-scale skip connection;semantic segmentation
    日期: 2022-02-15
    上传时间: 2023-05-11 12:05:24 (UTC+8)
    出版者: IEEE
    摘要: Semantic segmentation of remote sensing images plays a vital role in land resource management, yield estimation, and economic evaluation. Therefore, this paper proposes a multi-scale skip connection network with the Atrous convolution to deal with the segmentation problems of the multi-modal and multi-scale high-resolution remote sensing images. Firstly, we applied the Atrous convolution in the encoder to enlarge the convolution kernel’s receptive field. Secondly, based on the U-Net network, we merged the light and deep features of different scales by redesigning the skip connection and combining multi-scale features in each U-Net layer. Finally, we applied a pixel-by-pixel classification method and obtained the semantic segmentation results of remote sensing images. The effectiveness of the proposed algorithm is verified. The experimental results show that the mF1 scores are 89.4% and 90.3% on the open dataset of ISPRS Vaihingen and ISPRS Potsdam, respectively, which are better than the state-of-the-art algorithms.
    關聯: IEEE Sensors Journal 22(4), p. 3745-3755
    DOI: 10.1109/JSEN.2021.3139629
    显示于类别:[人工智慧學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML125检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈