淡江大學機構典藏:Item 987654321/123444
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64176/96941 (66%)
造訪人次 : 9159154      線上人數 : 14448
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/123444


    題名: Computer-aided Analysis System for Bone Age in X-ray Image using Deep Neural Network
    作者: Kuo, Wen-Chi;Hsiao, Wen-Tien;Chen*, Chii-Jen
    關鍵詞: Bone Age;X-ray;Hand Bone;Growth Plate;DNN
    日期: 2021-01-24
    上傳時間: 2023-04-28 18:08:14 (UTC+8)
    摘要: Presently, in clinical bone age analysis, the most famous method is still GP method, which published in 1959 by Greulich and Pyle et al. They used normal left palm and wrist X-ray images to be the references in different ages, and discriminated the difference bone ages between normal person and examinee. This study is based on deep neural network (DNN) algorithm. The Python programming modules, InceptionResNetV2 and Xception, are respectively used to implement ours proposed computer-aided system of bone age estimation. We also apply into the threshold segmentation and major axis correction method to assist the DNN training procedure, which can effectively remove redundant noise around the hand bone in X-ray images. In the experiments, there are 12,611 X-ray images in our database. During threshold segmentation, there are only 14 segmentation fault cases, accounting for 0.1% of total cases. Furthermore, the proposed system with DNN module can obtain a high accuracy rate and a small loss function in the training set. The proposed system in this study effectively enhances the bone age estimation. In the future, different DNN modules can be tried to improve the performance of ours system.
    顯示於類別:[資訊工程學系暨研究所] 會議論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML108檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋