淡江大學機構典藏:Item 987654321/123444
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8443384      在线人数 : 8093
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/123444


    题名: Computer-aided Analysis System for Bone Age in X-ray Image using Deep Neural Network
    作者: Kuo, Wen-Chi;Hsiao, Wen-Tien;Chen*, Chii-Jen
    关键词: Bone Age;X-ray;Hand Bone;Growth Plate;DNN
    日期: 2021-01-24
    上传时间: 2023-04-28 18:08:14 (UTC+8)
    摘要: Presently, in clinical bone age analysis, the most famous method is still GP method, which published in 1959 by Greulich and Pyle et al. They used normal left palm and wrist X-ray images to be the references in different ages, and discriminated the difference bone ages between normal person and examinee. This study is based on deep neural network (DNN) algorithm. The Python programming modules, InceptionResNetV2 and Xception, are respectively used to implement ours proposed computer-aided system of bone age estimation. We also apply into the threshold segmentation and major axis correction method to assist the DNN training procedure, which can effectively remove redundant noise around the hand bone in X-ray images. In the experiments, there are 12,611 X-ray images in our database. During threshold segmentation, there are only 14 segmentation fault cases, accounting for 0.1% of total cases. Furthermore, the proposed system with DNN module can obtain a high accuracy rate and a small loss function in the training set. The proposed system in this study effectively enhances the bone age estimation. In the future, different DNN modules can be tried to improve the performance of ours system.
    显示于类别:[資訊工程學系暨研究所] 會議論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML107检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈