淡江大學機構典藏:Item 987654321/123424
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64188/96968 (66%)
造訪人次 : 11334585      線上人數 : 258
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/123424


    題名: Social Media Mining on Taipei's Mass Rapid Transit Station Services based on Visual-Semantic Deep Learning
    作者: TAO, Chi-Chung;CHEUNG, Yue-Lang Jonathan
    關鍵詞: social media analytics;opinion mining;visual semantic;deep learning;Taipei MRT station services;quality assessment
    日期: 2022-03-31
    上傳時間: 2023-04-28 18:03:10 (UTC+8)
    出版者: World Scientific and Engineering Academy and Society (W S E A S)
    摘要: For public transport operators, passengers’ comments towards their experience are valuable for promoting more friendly transportation services. This paper demonstrates that passenger-generated online comments can be used to assess railway transportation station services. The natural language processing and social media mining techniques that include establishing an opinion classification model through visual semantic fusion deep learning methods are applied to assess Taipei’s Mass Rapid Transit (MRT) station services from the internet opinions. An opinion monitoring system includes: (1) opinion mining to build a social media comment dataset on the ontology of MRT stations.; (2) proposing intent-sentiment, image-text relationship, and content type categories to assist accessing of passengers’ quality of experience; (3) constructing a classification model to classify the nature of opinions (4) proposing visualization to provide an intuitive information display dashboard to help Taipei’s MRT operator sense the sentiment-intention trends of comments on each station and access the current service level as well as part of the quality management assessment is also proposed.
    關聯: WSEAS TRANSACTIONS on COMPUTERS 21, p.110-117
    DOI: 10.37394/23205.2022.21.16
    顯示於類別:[運輸管理學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML84檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋