淡江大學機構典藏:Item 987654321/123374
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64180/96952 (66%)
造訪人次 : 11332586      線上人數 : 111
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/123374


    題名: Numerical and Experimental Studies on the Aerodynamics of NACA64 and DU40 Airfoils at Low Reynolds Numbers
    作者: Chieh-Hsun, Wu 1;Chen, Jing-Zong;Lo, Yuan-Lung;Fu, Chung-Lin
    關鍵詞: aerodynamics;airfoils;Reynolds number;Vortex Particle Method;wind tunnel experiments;wind energy
    日期: 2023-01-22
    上傳時間: 2023-04-28 17:49:08 (UTC+8)
    出版者: MDPI AG
    摘要: The aerodynamics of airfoils can be seen in a wide range of applications. To obtain the aerodynamic loads, geometrically-scaled airfoil sections are tested in wind tunnels. However, due to the limited space of the wind tunnel, the mismatch of Reynolds numbers may lead to different aerodynamic loads. Previous works showed that decreased lifts and increased drag coefficients are associated with lower Reynolds numbers, which are accompanied by the changes in ambient flow, such as increased sizes of the separation bubbles and wake vortices. Although insightful, few direct connections between loads, pressures, and ambient flow were presented, leaving a critical knowledge gap for aerodynamic modifications to improve the aerodynamic performances at low Reynolds numbers. To bridge this gap, this work utilizes numerical simulations and wind tunnel experiments to study the aerodynamics of a thin airfoil (NACA64) and a thick airfoil (DU40), at two chord Reynolds numbers, i.e., 4000 and 60,000. The two-dimensional (2D) vortex particle method (VPM) with varying-sized particles is used to simulate the unsteady flow and compared to the steady-state simulations by XFOIL. As the Reynolds number increases, it reveals that the higher lift coefficients are associated with the increased upstream suction and positive pressures on the upper and lower surfaces of the airfoils, respectively. These changes are explained by the increased and decreased normalized wind speeds on the upper and lower surfaces of the airfoils, respectively. Stronger pressure recoveries observed downstream of the reattachment points are the main cause of drag reductions at higher Reynolds numbers. The smaller and more irregular vortices in the roll-up shear layers and wakes observed at the higher Reynolds number are similar to the previous experimental findings, which are shown in this work to make the force fluctuations more irregular at higher frequencies. Possibly due to missing 3D effects, the results obtained from the 2D VPM are observed to ‘overestimate’ the effects of increasing the Reynolds number at ReC = 60,000. Furthermore, both VPM and XFOIL are found to work best in explaining the physics at low angles of attacks, i.e., −10°≤α≤10°
    , which are similar to the previous numerical works utilizing 2D methods.
    關聯: Appl. Sci. 2023, 13(3), 1478
    DOI: 10.3390/app13031478
    顯示於類別:[土木工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML147檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋