English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62830/95882 (66%)
造访人次 : 4105446      在线人数 : 866
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/123313


    题名: Electromagnetic Imaging of Uniaxial Objects by Artificial Intelligence Technology
    作者: Chien-Ching Chiu;Po-Hsiang Chen;Hao Jiang
    关键词: Image reconstruction;Neural networks;Imaging;Deep learning;Permittivity;Inverse problems;Electromagnetics
    日期: 2022-12-16
    上传时间: 2023-04-28 17:36:42 (UTC+8)
    出版者: IEEE
    摘要: The electromagnetic (EM) imaging of uniaxial objects by the artificial intelligence (AI) technology is presented in this article. We study the 2-D inverse scattering problem from uniaxial objects illuminated by the transverse magnetic (TM) and transverse electric (TE) polarized incident waves. As the uniaxial objects have different components of permittivity along different transverse directions, the problem of TE polarization will be more severe than that of TM polarization. We use the dominant current scheme (DCS) and backpropagation scheme (BPS) to calculate the preliminary permittivity distribution. By combining with deep learning and neural networks, the permittivity distribution of those uniaxial objects can be reconstructed more accurately. U-Net is used to reconstruct the permittivity distribution because U-Net has shared the weights and biases, which can effectively reduce the network complexity and is very suitable for solving image processing problems. In the numerical results, we added different noises to compare the reconstruction results of the DCS and BPS initial estimations through the U-Net. Numerical results show that the reconstruction permittivity for the DCS initial estimation is better than that for the BPS initial estimation. Our diversity is that we have reconstructed the uniaxial objects by neural network successfully with less time-consuming effort and real-time imaging.
    關聯: IEEE Transactions on Geoscience and Remote Sensing 60, 2008414
    DOI: 10.1109/TGRS.2022.3222502
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML33检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈