淡江大學機構典藏:Item 987654321/123312
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 10949153      線上人數 : 21069
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/123312


    題名: Comparison of U-Net and OASRN Neural Network for Microwave Imaging
    作者: Chiu, C. C.;Kang, T. H.;Chen, P. H.;Hao, J.;Chen, Y. K.
    關鍵詞: Microwave imaging;U-Net;Object-Attentional Super-Resolution Network (OASRN);convolution neural network;deep learning
    日期: 2022-08-23
    上傳時間: 2023-04-28 17:36:39 (UTC+8)
    摘要: U-Net and Object-Attentional Super-Resolution Network (OASRN) neural network for electromagnetic imaging are compared and investigated in this paper. The outcome shows that though under limited training data, the regeneration capability is still highly reliable. We first transmit the electromagnetic waves to the scatterer and use the received scattered field information to calculate the estimated permittivity distribution by Green’s function, subspace method and Dominant Current Scheme (DCS). The estimation technique can effectively reduce the training process of the neural network modules. Next, we train the U-Net and OASRN modules for real-time images. Lastly, we used Root Mean Square Error (RMSE) and Structural Similarity Index Measure (SSIM) to compare and analyze the reconstructed images of the two neural networks. Numerical results show that the reconstructed image by OASRN is better than that by U-net with 5% or 20% Gaussian noise for different dielectric constant distributions.
    關聯: Journal of Electromagnetic Waves and Applications 37(1), p.93-109
    DOI: 10.1080/09205071.2022.2113444
    顯示於類別:[電機工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML75檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋