淡江大學機構典藏:Item 987654321/123293
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8332738      在线人数 : 7977
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/123293


    题名: Stress–strength inference on the multicomponent model based on generalized exponential distributions under type-I hybrid censoring
    作者: Tsai, Tzong-Ru;Lio, YL;Chiang, J-Y;Chang, Y-W
    关键词: multicomponent stress–strength model;generalized exponential distribution;Bayesian method;Markov chain Monte Carlo method;highest probability density interval
    日期: 2023-03-04
    上传时间: 2023-04-28 17:33:34 (UTC+8)
    出版者: MDPI AG
    摘要: The stress–strength analysis is investigated for a multicomponent system, where all strength variables of components follow a generalized exponential distribution and are subject to the generalized exponential distributed stress. The estimation methods of the maximum likelihood and Bayesian are utilized to infer the system reliability. For the Bayesian estimation method, informative and non-informative priors combined with three loss functions are considered. Because the computational difficulty on working posteriors, the Markov chain Monte Carlo method is adopted to obtain the approximation of the reliability estimator posterior. In addition, the bootstrap method and highest probability density interval are used to obtain the reliability confidence intervals. The simulation study shows that the Bayes estimator with informative prior is superior to other competitors. Finally, two real examples are given to illustrate the proposed estimation methods.
    關聯: Mathematics 2023 11(5), 1249
    DOI: 10.3390/math11051249
    显示于类别:[統計學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML109检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈