English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64188/96967 (66%)
造訪人次 : 11337217      線上人數 : 50
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/123286


    題名: Bias Correction Method for Log-Power-Normal Distribution
    作者: Tsai, Tzong-Ru;Lio, Yuhlong;Fan, Ya-Yen;Cheng, Che-Pin
    關鍵詞: bias correction;log-power-normal distribution;maximum likelihood estimation;Monte Carlo simulation;quality control
    日期: 2022-03-17
    上傳時間: 2023-04-28 17:33:15 (UTC+8)
    出版者: MDPI AG
    摘要: The log-power-normal distribution is a generalized version of the log-normal distribution. The maximum likelihood estimation method is the most popular method to obtain the estimates of the log-power-normal distribution parameters. In this article, we investigate the performance of the maximum likelihood estimation method for point and interval inferences. Moreover, a simple method that has less impact from the subjective selection of the initial solutions to the model parameters is proposed. The bootstrap bias correction method is used to enhance the estimation performance of the maximum likelihood estimation method. The proposed bias correction method is simple for use. Monte Carlo simulations are conducted to check the quality of the proposed bias correction method. The simulation results indicate that the proposed bias correction method can improve the performance of the maximum likelihood estimation method with a smaller bias and provide a coverage probability close to the nominal confidence coefficient. Two real examples about the air pollution and cement’s concrete strength are used for illustration.
    關聯: Mathematics 10(6), 955
    DOI: 10.3390/math10060955
    顯示於類別:[統計學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML86檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋