淡江大學機構典藏:Item 987654321/123274
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64180/96952 (66%)
造訪人次 : 11332691      線上人數 : 82
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/123274


    題名: A review unveiling various machine learning algorithms adopted for biohydrogen productions from microalgae
    作者: Sobri, Mohamad Zulfadhli Ahmad;Redhwan, Alya;Ameen, Fuad;Lim, Jun Wei;Liew, Chin Seng;Mong, Guo Ren;Daud, Hanita;Sokkalingam, Rajalingam;Ho, Chii-Dong;Usman, Anwar;Nagaraju, D. H.;Rao, Pasupuleti Visweswara
    關鍵詞: machine learning;biohydrogen;microalgae;nonlinear interaction;prediction;overfitting
    日期: 2023-03-02
    上傳時間: 2023-04-28 17:30:28 (UTC+8)
    出版者: MDPI AG
    摘要: Biohydrogen production from microalgae is a potential alternative energy source that is now intensively being researched. The complex natures of the biological processes involved have afflicted the accuracy of traditional modelling and optimization, besides being costly. Accordingly, machine learning algorithms have been employed to overcome setbacks, as these approaches have the capability to predict nonlinear interactions and handle multivariate data from microalgal biohydrogen studies. Thus, the review focuses on revealing the recent applications of machine learning techniques in microalgal biohydrogen production. The working principles of random forests, artificial neural networks, support vector machines, and regression algorithms are covered. The applications of these techniques are analyzed and compared for their effectiveness, advantages and disadvantages in the relationship studies, classification of results, and prediction of microalgal hydrogen production. These techniques have shown great performance despite limited data sets that are complex and nonlinear. However, the current techniques are still susceptible to overfitting, which could potentially reduce prediction performance. These could be potentially resolved or mitigated by comparing the methods, should the input data be limited.
    關聯: Fermentation 9, 243-254
    DOI: 10.3390/fermentation9030243
    顯示於類別:[化學工程與材料工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML142檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋