淡江大學機構典藏:Item 987654321/123274
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 10773240      在线人数 : 20268
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/123274


    题名: A review unveiling various machine learning algorithms adopted for biohydrogen productions from microalgae
    作者: Sobri, Mohamad Zulfadhli Ahmad;Redhwan, Alya;Ameen, Fuad;Lim, Jun Wei;Liew, Chin Seng;Mong, Guo Ren;Daud, Hanita;Sokkalingam, Rajalingam;Ho, Chii-Dong;Usman, Anwar;Nagaraju, D. H.;Rao, Pasupuleti Visweswara
    关键词: machine learning;biohydrogen;microalgae;nonlinear interaction;prediction;overfitting
    日期: 2023-03-02
    上传时间: 2023-04-28 17:30:28 (UTC+8)
    出版者: MDPI AG
    摘要: Biohydrogen production from microalgae is a potential alternative energy source that is now intensively being researched. The complex natures of the biological processes involved have afflicted the accuracy of traditional modelling and optimization, besides being costly. Accordingly, machine learning algorithms have been employed to overcome setbacks, as these approaches have the capability to predict nonlinear interactions and handle multivariate data from microalgal biohydrogen studies. Thus, the review focuses on revealing the recent applications of machine learning techniques in microalgal biohydrogen production. The working principles of random forests, artificial neural networks, support vector machines, and regression algorithms are covered. The applications of these techniques are analyzed and compared for their effectiveness, advantages and disadvantages in the relationship studies, classification of results, and prediction of microalgal hydrogen production. These techniques have shown great performance despite limited data sets that are complex and nonlinear. However, the current techniques are still susceptible to overfitting, which could potentially reduce prediction performance. These could be potentially resolved or mitigated by comparing the methods, should the input data be limited.
    關聯: Fermentation 9, 243-254
    DOI: 10.3390/fermentation9030243
    显示于类别:[化學工程與材料工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML142检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈