淡江大學機構典藏:Item 987654321/123270
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64178/96951 (66%)
Visitors : 10046210      Online Users : 21456
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/123270


    Title: Synthesis, Characterization and Gas Adsorption of Unfunctionalized and TEPA-functionalized MSU-2
    Authors: Lee, Xin Ying;Viriya, Vinosha;Chew, Thiam Leng;Oh, Pei Ching;Ong, Yit Thai;Ho, Chii-Dong;Jawad, and Ze-inab Abbas
    Keywords: CO2 capture;adsorption;MSU-2;tetraethylenepentamine;functionalization
    Date: 2022-09-27
    Issue Date: 2023-04-28 17:30:12 (UTC+8)
    Publisher: MDPI AG
    Abstract: Michigan State University-2 (MSU-2) is notable potential adsorbent for carbon dioxide (CO2) due to its intrinsic properties, which include its highly interconnected three-dimensional (3D) wormhole-like framework structure, high specific surface area, and its large total pore volume, as well as its large amount of surface silanol hydroxyl groups, which facilitate the amine functionalization process. In this study, unfunctionalized MSU-2 was synthesized via a fluoride-assisted two-step process via the solution precipitation method, using Triton X-100 as the surfactant and tetraethylorthosilicate (TEOS) as the silica precursor. Then, the synthesized MSU-2 was functionalized using varying tetraethylenepentamine (TEPA) loadings of 20–60 wt%. The effect of different TEPA loadings on the properties and CO2 adsorption capacity of the MSU samples was investigated. Studies of the CO2 adsorption of the unfunctionalized and TEPA-functionalized MSU-2 samples was conducted at 40 °C and 1 bar of pressure. Furthermore, scanning electron microscopy (SEM); surface area and porosity (SAP) analysis; carbon, hydrogen, nitrogen, and sulfur (CHNS) analysis, X-ray diffractometry (XRD); Fourier transform infrared (FTIR) spectrometry; and thermogravimetric analysis (TGA) were utilized to characterize the resultant unfunctionalized and TEPA-functionalized MSU-2 with different TEPA loadings in order to study their morphologies, pore characteristics, elemental compositions, crystallographic structures, functional groups, chemical bonding, and thermal stability, respectively. The comprehensive results obtained from the analytical instruments and the CO2 adsorption studies indicated that the TEPA-functionalized MSU-2 with 40 wt% of TEPA loading achieved the highest average CO2 adsorption capacity of 3.38 mmol-CO2/g-adsorbent.
    Relation: Processes 10(10), p.1943-1956
    DOI: 10.3390/pr10101943
    Appears in Collections:[Graduate Institute & Department of Chemical and Materials Engineering] Journal Article

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML85View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback