English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62567/95223 (66%)
Visitors : 2518737      Online Users : 58
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/123258


    Title: Brownian motion of poly(divinylbenzene) nanoparticles in water
    Authors: Lin, Ching-Bin;Lee, Chia-Wei;Ouyang, Hao;Yang, Fuqian;Lee, Sanboh
    Date: 2023-03-17
    Issue Date: 2023-04-28 17:27:27 (UTC+8)
    Publisher: AIP Publishing
    Abstract: Understanding the motion of nanoparticles in liquid is of practical importance for drug delivery and fluid flow in nanofluidic systems. In this work, we use a nanoparticle tracking analyzer to investigate the Brownian motion of polydivinylbenzene (PDVB) nanoparticles in water and a video camera to record the aggregation of PDVB aggregates on the water surface. Using water as the liquid medium precludes the possible complex interaction between the liquid medium and the PDVB nanoparticles, which can possibly alter the random characteristics of the motion of the PDVB nanoparticles. The diffusivity of the PDVB nanoparticles determined from the mean square displacements of the PDVB nanoparticles has the same activation energy as that for the intrinsic viscosity of the corresponding aqueous suspension of the PDVB nanoparticles. The correlation between the diffusivity for the motion of the PDVB nanoparticles in water and the intrinsic viscosity of the corresponding aqueous suspension follows the Stokes–Einstein relation. The capillary effect and the interaction between PDVB aggregates and the liquid media enable the aggregation of the PDVB aggregates on the water surface, which follows the first-order reaction with activation energy larger than that for the random motion of the PDVB nanoparticles in water.
    Relation: Journal of Applied Physics 133, 114303
    DOI: 10.1063/5.0139451
    Appears in Collections:[Graduate Institute & Department of Mechanical and Electro-Mechanical Engineering] Journal Article

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML14View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback