English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 9386167      在线人数 : 413
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/123247


    题名: Human Action Recognition of Autonomous Mobile Robot Using Edge-AI
    作者: Wang, Shih-Ting;Li, I-Hsum;Wang, Wei-Yen
    关键词: Autonomous mobile robot (AMR);bidirectional long-short-term-memory (BiLSTM);edge artificial intelligence (Edge AI);human action recognition (HAR);ROS
    日期: 2023-01-15
    上传时间: 2023-04-28 17:26:52 (UTC+8)
    出版者: IEEE
    摘要: The development of autonomous mobile robots (AMRs) has brought with its requirements for intelligence and safety. Human action recognition (HAR) within AMR has become increasingly important because it provides interactive cognition between human and AMR. This study presents a full architecture for edge-artificial intelligence HAR (Edge-AI HAR) to allow AMR to detect human actions in real time. The architecture consists of three parts: a human detection and tracking network, a key frame extraction function, and a HAR network. The HAR network is a cascade of a DenseNet121 and a double-layer bidirectional long-short-term-memory (DLBiLSTM), in which the DenseNet121 is a pretrained model to extract spatial features from action key frames and the DLBiLSTM provides a deep two-directional LSTM inference to classify complicated time-series human actions. Edge-AI HAR undergoes two optimizations—ROS distributed computation and TensorRT structure optimization—to give a small model structure and high computational efficiency. Edge-AI HAR is demonstrated in two experiments using an AMR and is demonstrated to give an average precision of 97.58% for single action recognition and around 86% for continuous action recognition.
    關聯: IEEE Sensors Journal 23(2), p.1671-1682
    DOI: 10.1109/JSEN.2022.3225158
    显示于类别:[機械與機電工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML189检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈