English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62822/95882 (66%)
Visitors : 4017129      Online Users : 552
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/123112


    Title: Evaluation of the dual-process approach for in-situ groundwater arsenic removal
    Authors: Wang, Sheng-Wei;Pan, Shu-Yuan;Kao, Yu-Hsuan;Kim, Hyunook;Fan, Chihhao
    Keywords: Groundwater;arsenic removal;dual process;irrigation
    Date: 2022-07-20
    Issue Date: 2023-04-28 16:58:45 (UTC+8)
    Publisher: Taylor & Francis
    Abstract: While the worldwide distribution of geogenic arsenic (As)-affected groundwater is highly overlapped with the areas with abundant groundwater, utilization of As-contained groundwater is an inevitable compromise in those areas where surface water is not enough for irrigation. Since the occurrence of As in groundwater is often accompanied by high iron (Fe) contents, the facilitation of As and Fe precipitation without adding additional oxidizers and adsorbents is considered an environmental-friendly approach to removing As in groundwater. In the present study, the oxidation/filtration dual-process with sprinkling height of 25 cm and 120 kg filter media efficiently increased the dissolved oxygen (DO) concentration (0.36–1.52 mg/L) and oxidation–reduction potential (ORP) (24–63 mV), which facilitated the formation of Fe oxides and As co-precipitation. The correlation of As removal efficiencies with their respective flow rates indicated that a decrease in groundwater Fe and an increase of Fe in sands and gravels filters as the flow rate increased evidenced the rapid oxidation of Fe to form the Fe hydroxides. In a 40-hour continuous aeration/filtration operation, As and Fe concentrations in groundwater were reduced by 79.5% and 64.88% within 40 hrs, respectively. The ease of filter replacement and cost-effectiveness in operation can be the major attractions and innovations for future field practices.
    Relation: Environmental Technology
    DOI: 10.1080/09593330.2022.2100283
    Appears in Collections:[Graduate Institute & Department of Water Resources and Environmental Engineering] Journal Article

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML69View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback