English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62819/95882 (66%)
造訪人次 : 4002705      線上人數 : 702
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/123103


    題名: Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 Porous Structure
    作者: Lee, Po-Ching;Yang, Zheng-Rong;Kuo, Chun-Yu;Shin, Chung-Hao;Lin, Ching-Bin
    關鍵詞: azo dye;E. coli;fused filament fabrication;reliability;silver chloride;titanium dioxide
    日期: 2022-11-15
    上傳時間: 2023-04-28 16:58:16 (UTC+8)
    摘要: An advanced three-dimensional printing process for producing the silver clusters/ Silver(I) chloride/titanium dioxide-coupled photocatalyst was developed and tested for its stability and degradability in relation to azo dye (Orange II) and bacteria (Escherichia coli). The titanium dioxide structure is produced through fused filament fabrication (FFF) with filaments of thermoplastic material, which is composed of titanium dioxide anatase nanoparticles, high density polyethylene (HDPE), stearic acid, wax, and plasticizer. The TiO2 structure is then solvent degreased, thermal degreased, and sintered to become a fundamental structure to couple the AgCl particles through an ion exchange process. Following the photoreduction of UV radiation, a silver clusters/Silver(I) chloride/titanium dioxide-coupled photocatalyst is formed. In our experiments, the degradation of Orange II dye and E. coli was performed under visible and ultraviolet light irradiation. The degradation kinetics of Orange II dye was a first-order reaction, with the degradability (94%) persisting for five cycles. The sterilization of E. coli was accomplished within 120 min, and the degradation kinetics were characteristic of a hyperbolic reaction. The photocatalytic module prepared through FFF not only exhibited the ability to degrade contaminants in water but also exhibited durability and reliability after repeated use.
    關聯: Journal of Materials Engineering and Performance
    DOI: 10.1007/s11665-022-07624-4
    顯示於類別:[水資源及環境工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML53檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋