淡江大學機構典藏:Item 987654321/122970
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64188/96967 (66%)
造访人次 : 11337807      在线人数 : 64
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/122970


    题名: Sketch-guided Deep Portrait Generation
    作者: Ho, Trang-Thi;Virtusio, John Jethro;Chen, Yung-Yao;Hsu, Chih-Ming;Hua, and Kai-Lung
    日期: 2020-07-05
    上传时间: 2023-04-28 16:33:06 (UTC+8)
    出版者: ACM New York, NY, USA
    摘要: Generating a realistic human class image from a sketch is a unique and challenging problem considering that the human body has a complex structure that must be preserved. Additionally, input sketches often lack important details that are crucial in the generation process, hence making the problem more complicated. In this article, we present an effective method for synthesizing realistic images from human sketches. Our framework incorporates human poses corresponding to locations of key semantic components (e.g., arm, eyes, nose), seeing that its a strong prior for generating human class images. Our sketch-image synthesis framework consists of three stages: semantic keypoint extraction, coarse image generation, and image refinement. First, we extract the semantic keypoints using Part Affinity Fields (PAFs) and a convolutional autoencoder. Then, we integrate the sketch with semantic keypoints to generate a coarse image of a human. Finally, in the image refinement stage, the coarse image is enhanced by a Generative Adversarial Network (GAN) that adopts an architecture carefully designed to avoid checkerboard artifacts and to generate photo-realistic results. We evaluate our method on 6,300 sketch-image pairs and show that our proposed method generates realistic images and compares favorably against state-of-the-art image synthesis methods.
    關聯: ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM) 16.3, p.1-18
    DOI: 10.1145/3396237
    显示于类别:[資訊工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML102检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈