淡江大學機構典藏:Item 987654321/122969
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8270858      在线人数 : 7324
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/122969


    题名: FedSGDCOVID: Federated SGD COVID-19 Detection under Local Differential Privacy Using Chest X-ray Images and Symptom Information
    作者: Ho, Trang-Thi;Tran, Khoa-Dang;Huang, Yennun
    关键词: COVID-19 detection;federated learning;convolutional neural network;differential privacy stochastic gradient descent;spatial pyramid pooling layer;chest X-ray images;COVID-19 symptoms
    日期: 2022-05-13
    上传时间: 2023-04-28 16:33:04 (UTC+8)
    出版者: MDPI
    摘要: Coronavirus (COVID-19) has created an unprecedented global crisis because of its detrimental effect on the global economy and health. COVID-19 cases have been rapidly increasing, with no sign of stopping. As a result, test kits and accurate detection models are in short supply. Early identification of COVID-19 patients will help decrease the infection rate. Thus, developing an automatic algorithm that enables the early detection of COVID-19 is essential. Moreover, patient data are sensitive, and they must be protected to prevent malicious attackers from revealing information through model updates and reconstruction. In this study, we presented a higher privacy-preserving federated learning system for COVID-19 detection without sharing data among data owners. First, we constructed a federated learning system using chest X-ray images and symptom information. The purpose is to develop a decentralized model across multiple hospitals without sharing data. We found that adding the spatial pyramid pooling to a 2D convolutional neural network improves the accuracy of chest X-ray images. Second, we explored that the accuracy of federated learning for COVID-19 identification reduces significantly for non-independent and identically distributed (Non-IID) data. We then proposed a strategy to improve the model’s accuracy on Non-IID data by increasing the total number of clients, parallelism (client-fraction), and computation per client. Finally, for our federated learning model, we applied a differential privacy stochastic gradient descent (DP-SGD) to improve the privacy of patient data. We also proposed a strategy to maintain the robustness of federated learning to ensure the security and accuracy of the model.
    關聯: Sensors 2022, 22(10), 3728
    DOI: 10.3390/s22103728
    显示于类别:[資訊工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML147检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈