淡江大學機構典藏:Item 987654321/122966
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 9999176      在线人数 : 18333
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/122966


    题名: Artist-based painting classification using Markov random fields with convolution neural network
    作者: Hua, Kai-Lung;Ho, Trang-Thi;Jangtjik, Kevin-Alfianto;Yeh, Yu-Jen Chen & Mei-Chen
    关键词: Image classification;Multi-scale pyramid;Markov random fields;Convolutional neural network
    日期: 2020-01-21
    上传时间: 2023-04-28 16:32:56 (UTC+8)
    出版者: Springer
    摘要: Determining the authorship of a painting image is a challenging task because paintings of an artist may not have a unique style and various artists may have similar painting styles. In this paper, we present a new approach to categorize digital painting images based on artist. We construct a multi-scale pyramid from a painting image to consider both globally and locally the information contained in one image. For each layer, we train a Convolutional Neural Network (CNN) model to determine the class label. To build the relationship within local image patches, we employ Markov random fields (MRFs) by optimizing the Gibbs energy function defined by (1) the data term measuring the compatibility of labeling with given data, and (2) the smoothness term penalizing assignments that label neighboring patches differently. A new fusion scheme is proposed to aggregate patch-level classification results. The proposed CNN-MRF method is validated using two challenging painting image datasets. Experimental results show that the proposed method is effective and achieves state-of-the-art performance.
    關聯: Multimedia Tools and Applications volume 79, p.12635–12658
    DOI: 10.1007/s11042-019-08547-4
    显示于类别:[資訊工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML76检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈