淡江大學機構典藏:Item 987654321/122851
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64185/96959 (66%)
Visitors : 11399155      Online Users : 12189
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/122851


    题名: Results Related to the Chern–Yamabe Flow
    作者: Ho, Pak Tung
    关键词: Chern–Yamabe problem;Chern–Yamabe flow;Chern scalar curvature
    日期: 2019-08-09
    上传时间: 2023-03-15 16:06:26 (UTC+8)
    出版者: Springer
    摘要: Let (X,ω0) be a compact complex manifold of complex dimension n endowed with a Hermitian metric ω0. The Chern–Yamabe problem is to find a conformal metric of ω0 such that its Chern scalar curvature is constant. As a generalization of the Chern–Yamabe problem, we study the problem of prescribing Chern scalar curvature. We then estimate the first nonzero eigenvalue of Hodge–de Rham Laplacian of(X,ω0)
    . On the other hand, we prove a version of conformal Schwarz lemma on (X,ω0). All these are achieved by using geometric flows related to the Chern–Yamabe flow. Finally, we prove the backwards uniqueness of the Chern–Yamabe flow.
    關聯: The Journal of Geometric Analysis 31, p.187-220
    显示于类别:[Department of Applied Mathematics and Data Science] Journal Article

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML55检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈